Dieses Bild zeigt Jörg F. Wagner

Jörg F. Wagner

Herr Prof. Dr.-Ing. habil.

Professur für Flugmesstechnik
[Foto: J. Wagner, K. Zhan]

Kontakt

+49 711 685 67046
+4971168551008

Website
Visitenkarte (VCF)

Pfaffenwaldring 31
70569 Stuttgart
Deutschland
Raum: 2.224

Fachgebiet

●  Mechanik und Mechatronik
    -  Strukturdynamik
    -  Mehrkörpersysteme
    -  Flugmechanik
    -  Experimentelle Mechanik
    -  Biomechanik
●  Systemtheorie
    -  Beobachter und Kalman-Filter
    -  Optimierung
●  Navigation
    -  Inertialsensorik
    -  Satellitennavigation
●  Wissenschaftsgeschichte
    -  Kreiseltechnik
    -  Luft- und Raumfahrttechnik

  1. 2022

    1. M. Kohl, B. Györfi, und J. F. Wagner, „On the Influence of Sample Rate, Calibration, and Allan Variance Parameters on the Accuracy of ZUPT-Based Pedestrian Navigation with MEMS IMUs“, in 2022 DGON Inertial Sensors and Systems (ISS), 2022, S. 10.1-10.22. doi: 10.1109/iss55898.2022.9926342.
    2. J. Wagner, „KreiselLäufer -- Sammlung zur Kreiseltechnik und Inertialnavigation“, Schaustücke -- Einblicke in wissenschaftliche Sammlungen der Universität Stuttgart. Universität Stuttgart, S. 22--23, Mai 2022.
    3. J. F. Wagner, M. Kohl, und B. Györfi, „Reevaluation of Algorithmic Basics for ZUPT-Based Pedestrian Navigation“, IEEE Access, Bd. 10, S. 118419--118437, 2022, doi: 10.1109/access.2022.3220629.
  2. 2021

    1. K. Eberle und J. Wagner, Versuchstechnik. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    2. D. Fritsch u. a., „Making Historical Gyroscopes Alive--2D and 3D Preservations by Sensor Fusion and Open Data Access“, Sensors, Bd. 21, S. 957, Feb. 2021, doi: 10.3390/s21030957.
    3. J. Wagner, Einführung in die Finite Elemente Methode. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    4. J. Wagner, Mechanische Systeme - Dynamik III. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    5. J. Wagner und H.-P. Mlejnek, Strukturdynamik - Dynamik I. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    6. J. Wagner und H.-P. Mlejnek, Strukturdynamik - Dynamik II. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    7. J. Wagner und H.-P. Mlejnek, Tragwerksoptimierung. Stuttgart: Universität Stuttgart, Professur für Flugmesstechnik, 2021.
    8. J. F. Wagner u. a., „Digital Gyroscope Collection Created by the Project ‘Gyrolog’“. DaRUS, 2021. doi: 10.18419/DARUS-GYROLOG.
    9. J. F. Wagner, B. Ceranski, D. Fritsch, und S. Simon, „Gyrolog - Aufbau einer digitalen Kreiselsammlung für historische und didaktische Forschung : Schlussbericht : BMBF-Förderlinie eHeritage“, Universität Stuttgart, Professur für Flugmesstechnik, Publication, 2021. doi: 10.2314/KXP:1768094594.
    10. K. Zhan, D. Fritsch, und J. F. Wagner, „Integration of Photogrammetry, Computed Tomography and Endoscopy for Gyroscope 3D Digitization“, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bd. XLVI-M-1–2021, S. 925--931, Aug. 2021, doi: 10.5194/isprs-archives-xlvi-m-1-2021-925-2021.
    11. K. Zhan, D. Fritsch, und J. F. Wagner, „Photogrammetry and Computed Tomography Point Cloud Registration Using Virtual Control Points“, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bd. XLIII-B2-2021, S. 265--270, Juni 2021, doi: 10.5194/isprs-archives-xliii-b2-2021-265-2021.
    12. K. Zhan, D. Fritsch, und J. F. Wagner, „Stability analysis of intrinsic camera calibration using probability distributions“, IOP Conference Series: Materials Science and Engineering, Bd. 1048, Nr. 1, Art. Nr. 1, Jan. 2021, doi: 10.1088/1757-899x/1048/1/012010.
  3. 2020

    1. S. Barboza u. a., „The MICADO first light imager for the ELT: relay optics opto-mechanical design“, Ground-based and Airborne Instrumentation for Astronomy VIII. SPIE, Dezember 2020. doi: 10.1117/12.2559930.
    2. B. Greiner, R. Brewster, A. Mrzyglod, und J. Wagner, „Reactivation of the active mass damping system for SOFIA to improve image stability“, in Ground-based and Airborne Telescopes VIII, 2020, Bd. 11445, S. 114450W-. doi: 10.1117/12.2561373.
    3. J. F. Wagner, „Gottlob Buzengeiger: Instrumentenbau zwischen Münzgasse und Schloss in Tübingen“, Schwäbische Heimat, Bd. 71, Nr. 2, Art. Nr. 2, 2020, doi: 10.53458/sh.v71i2.1234.
    4. K. Zhan, Y. Song, D. Fritsch, G. Mammadov, und J. Wagner, „Computed Tomography Data Colouring Based on Photogrammetric Images“, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bd. XLIII-B2-2020, S. 361--368, Aug. 2020, doi: 10.5194/isprs-archives-xliii-b2-2020-361-2020.
  4. 2019

    1. S. Barboza, R.-R. Rohloff, F. Müller, R. Hofferbert, J.-U. Pott, und J. F. Wagner, „Modelling bolted joints for application in astronomical instrumentation“, 37. CADFEM ANSYS Simulation Conference. CADFEM / ANSYS, S. 1.6.0, 2019.
    2. M. Niklaus, K. Zhan, und J. F. Wagner, „Gyrolog -- Creating a 3-Dimensional Digital Collection of Classical Gyro Instruments“, 2019 DGON Inertial Sensors and Systems (ISS). IEEE, S. 1.1--1.23, 2019. doi: 10.1109/ISS46986.2019.8943640.
    3. J. F. Wagner, „Helmut W. Sorg 85 years“, 2019 DGON Inertial Sensors and Systems (ISS). IEEE, S. 2--4, 2019. doi: 10.1109/iss46986.2019.8943609.
  5. 2018

    1. S. Barboza u. a., „The MICADO first light imager for ELT: derotator design status and prototype results“, in Ground-based and Airborne Instrumentation for Astronomy VII, 2018, Bd. 10702, S. 107028T.1-107028T.16. doi: 10.1117/12.2311683.
    2. D. Fritsch u. a., „Gyrolog - Towards VR Preservations of Gyro Instruments for Historical and Didactical Research“, in 2018 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC), Okt. 2018, S. 1–7. doi: 10.23919/PNC.2018.8579456.
    3. B. Greiner, B. Malicek, M. Lachenmann, J. Wagner, und A. Krabbe, „A new Finite Element model of the SOFIA Primary Mirror Cell to investigate dynamical behavior“, in Ground-based and Airborne Telescopes VII, 2018, Bd. 10700, S. 107000K.1-107000K.10. doi: 10.1117/12.2311997.
    4. O. Künzel und J. Wagner, Auf dem Weg zum Donauflug. Ulm: Klemm und Ölschläger, 2018.
    5. Y. Lammen, A. Reinacher, B. Greiner, J. Wagner, und A. Krabbe, „Increasing the SOFIA Secondary Mirror Mechanisms fast steering capability by identification of a structural resonance and its subsequent elimination through mass re-distribution“, Journal of Astronomical Instrumentation, Bd. 7, Nr. 4, Art. Nr. 4, 2018, doi: 10.1142/s2251171718400019.
    6. M. Niklaus und J. F. Wagner, „Gyrolog – Developing a Digital Collection of Gyro Instruments for Historical and Didactical Research“, PAMM, Bd. 18, Nr. 1, Art. Nr. 1, 2018, doi: 10.1002/pamm.201800219.
    7. J. F. Wagner, „The Machine of Bohnenberger: Inertial link between astronomy, navigation, and geodesy“, in 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 2018, S. 129-132 (1–4). doi: 10.1109/ISISS.2018.8358150.
    8. J. Wagner, „Herausforderungen der Inertialmesstechnik“, in Sportinformatik XII : 12. Symposium der dvs-Sektion „Sportinformatik und Sporttechnologie“ vom 5.-7. September 2018 in Garching, 2018, S. 19.
    9. J. F. Wagner, „About Motion Measurement in Sports Based on Gyroscopes and Accelerometers - an Engineering Point of View“, Gyroscopy and Navigation, Bd. 9, Nr. 1, Art. Nr. 1, 2018, doi: 10.1134/S2075108718010091.
    10. J. F. Wagner, „Lebendiges Erbe“, in Gedenkschrift zum Wirken und zu den Verdiensten von Prof. Dr. rer. nat. Dr.-Ing. E.h. Kurt Magnus, J. Fischer-Wolfarth, Hrsg. Berlin: Stiftung Werner-von-Siemens-Ring, Berlin, 2018, S. 18--21.
  6. 2017

    1. S. Barboza u. a., „Modelling a Large Four-Point Contact Slewing Bearing for Application in Astronomical Instrumentation“, in 35. CADFEM ANSYS Simulation Conference, 2017, S. 2.5.05.
    2. B. Greiner und J. F. Wagner, „Multi-stage parameter identification of structural models from experimental data of varying assembly levels“, Proceedings in Applied Mathematics and Mechanics, PAMM, Bd. 17, Nr. 1, Art. Nr. 1, 2017, doi: 10.1002/pamm.201710120.
    3. J. F. Wagner und V. Lippens, „Inertiale Navigationssysteme im Sport - zwischen Anspruch und Mode“, in Innovation & Technologie im Sport, A. Schwirtz, F. Mess, Y. Demetriou, und V. Senner, Hrsg. Hamburg: Feldhaus, 2017, S. 255.
    4. J. F. Wagner, „Об измерении параметров движения спортсменов с помощью гироскопов и акселерометров. Технические аспекты“, Giroskopiya i Navigatsiya, Bd. 25, Nr. 3, Art. Nr. 3, 2017, doi: 10.17285/0869-7035.2017.25.3.003-031.
  7. 2016

    1. S. Barboza, J.-U. Pott, R.-R. Rohloff, F. Müller, J. Wagner, und H. J. Kärcher, „Design of a large image derotator for the E-ELT instrument MICADO“, in Proceedings of SPIE - The International Society for Optical Engineering, 2016, Bd. 9908. doi: 10.1117/12.2231632.
    2. B. Greiner, Y. Lammen, A. Reinacher, A. Krabbe, und J. Wagner, „Characterization of the mechanical properties of the SOFIA secondary mirror mechanism in a multi-stage approach“, in Proceedings of SPIE - The International Society for Optical Engineering, 2016, Bd. 9906. doi: 10.1117/12.2231648.
    3. H. J. Kärcher, E. F. Erickson, A. Krabbe, und J. Wagner, „SOFIA Design history“, in Proceedings of SPIE - The International Society for Optical Engineering, 2016, Bd. 9906. doi: 10.1117/12.2232715.
    4. J. F. Wagner und A. Trierenberg, „Die Maschine von Bohnenberger: Ursprung der Kreiseltechnik“, in Johann Gottlieb Friedrich Bohnenberger: Pionier des Industriezeitalters, E. Baumann, Hrsg. Stuttgart: W. Kohlhammer, 2016, S. 153–168.
    5. J. F. Wagner, „Inertial and integrated motion measurement systems in biomechanics“, in 23rd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2016 - Proceedings, 2016, S. 467–477. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-84979500087&partnerID=MN8TOARS
    6. J. Wagner, „Moderne Hilfsmittel aus der Navigation - Zur Messung der Gleichgewichts-Leistung“, in Zur Problematik der Gleichgewichts-Leistung im Handlungsbezug, V. Lippens und V. Nagel, Hrsg. Hamburg: Czwalina, 2016, S. 26–43.
  8. 2015

    1. S. Barboza, J. F. Wagner, R.-R. Rohloff, H. Baumeister, J.-U. Pott, und W. Schlossmacher, „FEA of Carbon Fiber Tubes and Composite Panels as Structural Elements for the Cover of an Astronomical Instrument“, in Ansys Conference and 33. CADFEM users’ meeting, 2015, S. 2–4.
    2. P. Kaswekar und J. F. Wagner, „Sensor fusion based vibration estimation using inertial sensors for a complex lightweight structure“, 2015. doi: 10.1109/InertialSensors.2015.7314265.
    3. J. F. Wagner, H. J. Kärcher, und A. Britz, „Die Sternwarte SOFIA“, mobiles, Bd. 38, S. 56–62, 2015.
    4. J. F. Wagner und M. Perlmutter, „The ISS Symposium Turns 50: Trends and Developments of Inertial Technology during Five Decades“, 2015.
    5. J. F. Wagner und M. Perlmutter, „The ISS Symposium Turns 50: Trends and Developments of Inertial Technology during Five Decades.“, European Journal of Navigation, Bd. 13, Nr. 3, Art. Nr. 3, 2015.
  9. 2014

    1. P. Kaswekar, B. Greiner, und J. Wagner, „The integrated motion measurement simulation for SOFIA“, in Proceedings of SPIE - The International Society for Optical Engineering, 2014, Bd. 9145. doi: 10.1117/12.2054900.
    2. H. J. Kärcher, N. Kunz, P. Temi, A. Krabbe, J. Wagner, und M. Süß, „SOFIA pointing history“, in Proceedings of SPIE - The International Society for Optical Engineering, 2014, Bd. 9145. doi: 10.1117/12.2055463.
    3. J. F. Wagner und A. Trierenberg, „Die Maschine von Bohnenberger - Astronomiegeschichte zum Anfassen“, in Der Himmel über Tübingen. Barocksternwarten - Landesvermessung - Astrophysik, Hamburg: tredition, 2014, S. 198–225.
    4. J. F. Wagner und A. Trierenberg, „The Machine of Bohnenberger“, in The History of Theoretical, Material and Computational Mechanics, E. Stein, Hrsg. Heidelberg: Springer, 2014, S. 81–100. doi: 10.1007/978-3-642-39905-3_6.
  10. 2013

    1. B. Greiner und J. Wagner, „Multi-Stage Model Identification of Lightweight Structures as Applied to the Stratospheric Observatory for Infrared Astronomy (SOFIA) Telescope Assembly“, in 5th GACM Colloquium on Computational Mechanics, 2013, S. 188.
    2. P. Kaswekar und J. Wagner, „Simulation of the Integrated Motion Measurement Method for an Airborne Large Telescope“, in 5th GACM Colloquium on Computational Mechanics, 2013, S. 187.
    3. O. Künzel u. a., Fliegen mit innovativen Technologien: Dokumentation der Berblinger Wettbewerbe 2006 und 2011 der Stadt Ulm. Ulm: Klemm und Oelschläger, 2013.
    4. T. Örtel, J. F. Wagner, und F. Saupe, „Integrated motion measurement illustrated by a cantilever beam“, Mechanical Systems and Signal Processing, Bd. 34, Nr. 1–2, Art. Nr. 1–2, 2013, doi: 10.1016/j.ymssp.2012.07.012.
  11. 2012

    1. H. J. Kärcher, J. Wagner, A. Krabbe, U. Lampater, T. Keilig, und J. Wolf, „SOFIA in operation: telescope performance during the early science flights“, in Proceedings of SPIE - The International Society for Optical Engineering, 2012, Bd. 8444. doi: 10.1117/12.925416.
  12. 2011

    1. J. F. Wagner und A. Trierenberg, „The machine of Bohnenberger: 200th birthday of the gimbal-mounted gyroscope -- Die Maschine von Bohnenberger: 200. Geburtstag des kardanisch gelagerten Kreisels“, GAMM Mitteilungen, Bd. 34, Nr. 2, Art. Nr. 2, 2011, doi: 10.1002/gamm.201110029.
  13. 2010

    1. H. Hügel, G. Brullo, D. Fritsch, und J. Wagner, Orientierung im Raum - 200 Jahre Maschine von Bohnenberger. LGL, Universität Stuttgart, 2010.
    2. P. Keas u. a., „SOFIA telescope modal survey test and test-model correlation“, in Proceedings of SPIE - The International Society for Optical Engineering, 2010, Bd. 7738. doi: 10.1117/12.856507.
    3. H. Kärcher, U. Lampater, und J. F. Wagner, „Status der Systemidentifizierung des Flugzeugteleskops SOFIA“, in Schwingungsanalyse und Identifikation, VDI-Berichte 2093, 2010, S. 245–253.
    4. H. J. Kärcher, A. Krabbe, J. Wagner, C. Engfer, U. Lampater, und J. Wolf, „SOFIA in Operation: Status of the telescope in-flight commissioning“, in Proceedings of SPIE - The International Society for Optical Engineering, 2010, Bd. 7733. doi: 10.1117/12.856384.
    5. V. Lippens, V. Nagel, und J. F. Wagner, „Geschickte Koordinations-Leistung in bewegten Situationen -  Zur Regulation eines dynamischen Systemgleichgewichts in gerätegebundenen Sportarten“, in Inline-Skating: Trends - Entwicklungsperspektiven - Anwendungsfelder, Hamburg: Czwalina, 2010, S. 89–100.
    6. A. Trierenberg und J. F. Wagner, „First Demonstration of a Gimbal Mounted Gyroscope“, in Symposium Gyro Technology 2010, 2010, S. 1.1-1.20.
    7. A. Trierenberg und J. F. Wagner, „The Origin of the Gyroscope: The Machine of Bohnenberger“, Bulletin of the Scientific Instrument Society, Bd. 107, S. 10–17, 2010.
    8. J. Wagner und H. W. Sorg, „The Bohnenberger machine“, Gyroscopy and Navigation, Bd. 1, Nr. 1, Art. Nr. 1, 2010, doi: 10.1134/S2075108710010116.
    9. J. F. Wagner und A. Trierenberg, „The Machine of Bohnenberger: Bicentennial of the Gyro with Cardanic Suspension“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 10, S. 659–660, 2010, doi: 10.1002/pamm.201010322.
    10. J. F. Wagner und A. Trierenberg, „Ursprung der Kreiseltechnik: Die Maschine von Bohnenberger“, Mitteilungen / Deutscher Verein für Vermessungswesen, Landesverein Baden-Württemberg, Bd. 57, Nr. 2, Art. Nr. 2, 2010.
  14. 2009

    1. F. Harms, A. Reinacher, J. F. Wagner, und T. Guettler-Sergeant, „Performance Evaluation of the Fiber Optic Gyroscopes Integrated into the SOFIA Telescope Assembly“, in Symposium Gyro Technology 2009, 2009, S. 11.1-11.19.
    2. T. Örtel und J. F. Wagner, „Integrated motion measurement for flexible structures using a modal and krylov subspace model reduction approach“, Journal of Intelligent Material Systems and Structures, Bd. 20, Nr. 15, Art. Nr. 15, 2009, doi: 10.1177/1045389X08098441.
  15. 2008

    1. A. Trierenberg und J. F. Wagner, „Die Maschine von Bohnenberger und das wissenschaftliche Werk ihres Urhebers“, Allgemeine Vermessungs-Nachrichten, Bd. 115, Nr. 3, Art. Nr. 3, 2008.
    2. J. F. Wagner, „Prof. Dr. Dr.-Ing. e.h. Ernst Stuhlinger - 19.12.1913-27.05.2008“, Luft- und Raumfahrt, Bd. 29, Nr. 5, Art. Nr. 5, 2008, [Online]. Verfügbar unter: http://www.dglr.de/news/mitteilungen/dglr_2008-5.pdf
    3. J. F. Wagner und T. Oertel, „Accelerometers versa gyros in integrated navigation systems for flexible vehicles“, in Proceedings of the Institute of Navigation, National Technical Meeting, 2008, Bd. 2, S. 689–698. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-57649159215&partnerID=MN8TOARS
    4. J. Wagner und H. Sorg, „Machina Bohnenbergera“, Giroskopija i navigacija, Bd. 60, Nr. 1, Art. Nr. 1, 2008, [Online]. Verfügbar unter: http://www.elektropribor.spb.ru/nauchnaya-deyatelnost/zhurnal/arkhiv/400/
    5. T. Örtel und J. F. Wagner, „Model Reduction Approaches for Integrated Motion Measurement Systems Applied to Flexible Structures“, in MOVIC 2008, Preprints of the 9th International Conference on Motion and Vibration Control, 2008, S. 1107.1-1107.10.
  16. 2007

    1. M.-A. Pick, E. Kreuzer, und J. F. Wagner, „Dynamic Positioning of a Floating Structure“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 7, S. 4130021–4130022, 2007, doi: 10.1002/pamm.200700580.
    2. J. F. Wagner, „Öffnet das Tor zum Himmel - Ernst Stuhlinger, ein Schwabe als Pionier der modernen Raumfahrt“, in Hin und Weg - Tübinger in aller Welt, Tübingen: Stadtmuseum, 2007, S. 138–149.
    3. J. F. Wagner und T. Oertel, „Generalizing integrated navigation systems for structural health monitoring“, in Structural Health Monitoring 2007: Quantification, Validation, and Implementation - Proceedings of the 6th International Workshop on Structural Health Monitoring, IWSHM 2007, 2007, Bd. 2, S. 1245–1254. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-84945194156&partnerID=MN8TOARS
    4. T. Örtel und J. F. Wagner, „Integrated Measurement System Using Accelerometers and Gyros as Peripheral Sensors to Estimate the Motional State of an Elastic Beam“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 7, S. 4130001–4130002, 2007, doi: 10.1002/pamm.200700072.
    5. T. Örtel und J. F. Wagner, „Integrated Motion Measurement for Flexible Structures“, Technische Mechanik, Bd. 27, Nr. 2, Art. Nr. 2, 2007, [Online]. Verfügbar unter: http://www15.ovgu.de/ifme/zeitschrift_tm/02_HTML_Inhalt/2007.htm
  17. 2006

    1. C. Becker und J. F. Wagner, „Improving Satellite Navigation in Urban Regions“, European Journal of Navigation, Bd. 4, Nr. 5, Art. Nr. 5, 2006.
    2. S. Dixon u. a., „Abstracts from the 6th international conference on the Engineering of Sport, 10 to 14 July 2006, Olympic Hall, Munich, Germany“, Sports Engineering, Bd. 9, Nr. 3, Art. Nr. 3, 2006, doi: 10.1007/bf02844119.
    3. A. Meinicke, C. Woernle, und J. F. Wagner, „Kompensation der Lagefehler der Inertialsensoren in einer IMU“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 6, S. 103–104, 2006, doi: 10.1002/pamm.200610032.
    4. M.-A. Pick, E. Kreuzer, und J. F. Wagner, „Analysis of Critical Motions of Floating Structures“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 6, S. 323–324, 2006, doi: 10.1002/pamm.200610143.
    5. J. F. Wagner, „Employing Modern Elements of Vehicle Navigation for Integrated Motion Measurement in Sport“, in The Engineering of Sport 6, 2006, Bd. 2, S. 51–56. doi: 10.1007/978-0-387-46051-2_10.
    6. J. F. Wagner, „Integrated Motion Measurement in Biomechanics“, in Proceedings of the 2nd GAMM Seminar on Continuum Biomechanics, 2006, S. 121–130.
    7. J. F. Wagner und T. Örtel, „Integrated motion measurement of multibody systems and flexible vehicle structures“, in IFAC Proceedings Volumes (IFAC-PapersOnline), 2006, Bd. 4, S. 537–542. doi: 10.3182/20060912-3-de-2911.00094.
    8. T. Örtel und J. F. Wagner, „Integrated Motional Measurement for a Flexible Structure.“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 6, S. 829–830, 2006, doi: 10.1002/pamm.200610394.
  18. 2005

    1. J. F. Wagner, „From Bohnenberger’s Machine to Integrated Navigation Systems - 200 Years of Inertial Navigation“, in Photogrammetric Week ’05, 2005, S. 123–134.
    2. J. F. Wagner, H. Sorg, und A. Renz, „The Machine of Bohnenberger“, European Journal of Navigation, Bd. 3, Nr. 4, Art. Nr. 4, 2005.
    3. J. F. Wagner, „GNSS/INS integration: Still an attractive candidate for automatic landing systems?“, GPS Solutions, Bd. 9, Nr. 3, Art. Nr. 3, 2005, doi: 10.1007/s10291-004-0122-6.
    4. J. F. Wagner, H. Sorg, und A. Renz, „The Machine of Bohnenberger“, Geo-Informations-Systeme, Bd. 18, Nr. 4, Art. Nr. 4, 2005, [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-18144424805&partnerID=MN8TOARS
  19. 2004

    1. J. F. Wagner, „Integrated Motion Measurement of Rigid Multibody Systems“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 4, S. 173–174, 2004, doi: 10.1002/pamm.200410068.
    2. J. F. Wagner, „Integrierte Bewegungsmessung an Sportgeräten auf der Basis inertialer Navigationssysteme“, in Sporttechnologie zwischen Theorie und Praxis III - Beiträge zum 4. Workshop Sporttechnologie zwischen Theorie und Praxis, 2004, S. 45–60.
    3. J. F. Wagner, „Adapting the Principle of Integrated Navigation Systems to Measuring the Motion of Rigid Multibody Systems“, Multibody System Dynamics, Bd. 11, Nr. 1, Art. Nr. 1, 2004, doi: 10.1023/B:MUBO.0000014902.22416.90.
    4. J. F. Wagner und G. Kasties, „Applying the principle of integrated navigation systems to estimating the motion of large vehicles“, Aerospace Science and Technology, Bd. 8, Nr. 2, Art. Nr. 2, 2004, doi: 10.1016/j.ast.2003.09.006.
    5. J. F. Wagner, „GNSS/INS Integration - Still an Attractive Candidate for Automatic Landing Systems?“, in Proceedings of ISPA 2004 - International Symposium on Precision Approach and Automatic Landing, 2004, S. 27.1-27.22.
  20. 2003

    1. F. Deuble, C. Hofmann, B. Kröplin, und J. F. Wagner, „Ein Überblick über Modellbildungs- und Entwurfsmethoden für Schwingungsregelung und Struktur-Akustik-Regelung“, in Adaptronic Congress 2003, 2003, Bd. 2, S. 4.1-4.16.
    2. V. Lippens, V. Nagel, und J. F. Wagner, „Zur Verbesserung der Gleichgewichts-Leistung auf dem Turnkreisel“, in Messplätze, Messplatztraining, motorisches Lernen. Sport und Wissenschaft, Beihefte zu den Leipziger Sportwissenschaftlichen Beiträgen, 2003, S. 72–77.
    3. J. F. Wagner, V. Lippens, V. Nagel, M. Morlock, und M. Vollmer, „An Instrument Quantifying Human Balance Skills: Attitude Reference System for an Ankle Exercise Board“, International Journal of Computer Science in Sport, Bd. Special Edition 1, S. 96–105, 2003, [Online]. Verfügbar unter: https://iacss.org/index.php?id=59
    4. J. F. Wagner, Zur Verallgemeinerung integrierter Navigationssysteme auf räumlich verteilte Sensoren und flexible Fahrzeugstrukturen. Düsseldorf: VDI, 2003.
    5. J. F. Wagner und T. Wieneke, „Integrating satellite and inertial navigation - Conventional and new fusion approaches“, Control Engineering Practice, Bd. 11, Nr. 5, Art. Nr. 5, 2003, doi: 10.1016/S0967-0661(02)00043-6.
    6. J. F. Wagner und G. Kasties, „Modelling the Vehicle Kinematics as Key Element for the Design of Integrated Navigation Systems“, in Proceedings of the 11th IAIN World Congress, 2003, S. paper 81.
    7. J. F. Wagner und G. Kasties, „Modelling the Vehicle Kinematics as Key Element for the Design of Integrated Navigation Systems“, in Symposium Gyro Technology 2003, 2003, S. 14.1-14.20.
    8. J. F. Wagner, „Verallgemeinerung der kinematischen Modelle integrierter Navigationssysteme“, Proc. in Appl. Math. and Mech.: PAMM, Bd. 2, S. 152–153, 2003, doi: 10.1002/pamm.200310061.
  21. 2002

    1. D. Gondy und J. F. Wagner, „Design of a Hybrid and Flexible Height Reference System for Flight Inspection“, in Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002, S. 2388–2395.
    2. G. Jendrusch u. a., „Aspectos del entrenamiento de la técnica en el remo“, in Entramiento de la técnica: contribuciones para un enfoque interdisciplinario, Barcelona: Ed. Paidotribo, 2002, S. 329–384.
    3. J. F. Wagner und G. Kasties, „Anwendung des Prinzips integrierter Navigationssysteme auf große und flexible Fahrzeugstrukturen“, in Jahrbuch 2002 der DGLR, 2002, Bd. I, S. 99–108.
    4. J. F. Wagner und G. Kasties, „Improving the GPS/INS Integrated System Performance by Increasing the Distance Between GPS Antennas and Inertial Sensors“, in Proceedings of the ION 2002 National Technical Meeting, 2002, S. 103–115.
    5. J. F. Wagner und T. Wieneke, „Integrating Satellite and Inertial Navigation - Conventional and New Fusion Approaches“, Automatic Control in Aerospace 2001, S. 241–246, 2002, doi: 10.1016/S1474-6670(17)40734-8.
  22. 2001

    1. J. F. Wagner, V. Lippens, V. Nagel, M. Morlock, und M. Vollmer, „Generalising Integrated Navigation Systems: The Example of the Attitude Reference System for an Ankle Exercise Board“, in Symposium Gyro Technology 2001, 2001, S. 18.1-18.16.
    2. J. F. Wagner, „Vorrichtung zur Navigation und zur Bewegungssteuerung von Gegenständen sowie Anwendung einer solchen Vorrichtung auf nicht starre Gegenstände, DE19939345 C2“. 2001.
  23. 2000

    1. J. F. Wagner, G. Baldensperger, und R.-D. Therburg, „Design of a Hybrid Height Reference System for Precision Approach Radar Calibration“, in Proceedings of ISPA 2000 - International Symposium on Precision Approach and Automatic Landing, 2000, S. 441–450.
  24. 1999

    1. V. Lippens, V. Nagel, und J. F. Wagner, „Geschickte Koordinations-Leistung in bewegten Situationen - Zur Regulation eines dynamischen Systemgleichgewichts in gerätegebundenen Sportarten“, in Forschungsmethodologische Aspekte von Bewegung, Motorik und Training im Sport, 1999, S. 221–225.
  25. 1997

    1. G. Jendrusch u. a., „Aspekte des Techniktrainings im Rennrudern“, in Techniktraining: Beiträge zu einem interdisziplinären Ansatz, Schorndorf: Karl Hofmann, 1997, S. 312–368.
    2. J. F. Wagner, G. Kasties, und M. Guellali, „A Modified Technique for the Integration of GNSS and Micromechanical Inertial Sensors for Navigation Purposes“, in Proceedings of GNSS 97 - First European Symposium on Global Navigation Satellite Systems, 1997, S. 79–88.
    3. J. F. Wagner, W. Lechner, und F. Gustke, „Das Nationale Demonstrationsprojekt Satellitennavigation - Aufbau, Ziele und Koordinierung dieses Förderprojekts der DARA“, Ortung und Navigation, Bd. 1997, Nr. 1, Art. Nr. 1, 1997.
    4. J. F. Wagner und G. Kasties, „Verfahren zur Navigation unter Verwendung unterschiedlicher Messmethoden, DE19636425 C1“. 1997.
    5. J. F. Wagner, G. Kasties, und M. Klotz, „Alternative filter approach to integrate satellite navigation and inertial sensors“, in Proceedings of the National Technical Meeting, Institute of Navigation, 1997, S. 141–150. [Online]. Verfügbar unter: http://www.scopus.com/inward/record.url?eid=2-s2.0-0031333489&partnerID=MN8TOARS
  26. 1996

    1. W. Lechner, H. Evers, J. F. Wagner, und F. Gustke, „Container Management Systeme -- Anforderungen und Realisierungsmöglichkeiten“, in XII. Internationaler Kurs für Ingenieurvermessung 1996, 1996, Bd. 2, S. E3/1-E3/5.
    2. J. F. Wagner und G. Kasties, „Aspects of Combining Satellite Navigation and Low-Cost Inertial Sensors“, in Symposium Gyro Technology 1996, 1996, S. 11.1-11.20.
    3. J. F. Wagner und W. Lechner, Fachliche Abstimmung und Koordination des Nationalen Demonstrationsprojekts Satellitennavigation - Schlussbericht. Braunschweig: Avionik Zentrum, 1996. doi: 10.2314/KXP:1753029147.
  27. 1995

    1. S. Vieweg, A. Lipp, und J. F. Wagner, „Integrated Satellite-/Inertial Navigation with Low Cost Inertial Sensors for Precision Applications? - Feasibility, Tests and Experiences.“, in Proceedings of ISPA 95 - International Symposium on Precision Approach and Automatic Landing, 1995, S. 303–310.
    2. J. F. Wagner, Zur Simulation und Identifikation der Segelflug-Längsbewegung. Stuttgart: Universität Stuttgart, Fakultät Verfahrenstechnik, 1995.
  28. 1994

    1. G. Kasties, R. Jeske, und J. F. Wagner, „Realization of a Differential GPS-Calibration System for GIS-Purposes“, in Proceedings of EURNAV 94 - 3rd International Conference on Land Vehicle Navigation, 1994, S. 147–154.
    2. J. F. Wagner, „Modell zur rechnerischen Erzeugung von Luftturbulenz bei Flugsimulationen“, Z. angew. Math. Mech.: ZAMM, Bd. 74, S. T457–T459, 1994, doi: 10.1002/zamm.19940740505.
    3. J. F. Wagner, „On the Identification of the Speed Polar During Normal Soaring Flight“, Technical Soaring, Bd. 18, Nr. 2, Art. Nr. 2, 1994, [Online]. Verfügbar unter: https://journals.sfu.ca/ts/index.php/ts/article/view/631
  29. 1993

    1. J. Wagner, U. Bartmus, und H. de Marées, „Three-axes gyro system quantifying the specific balance of rowing“, International Journal of Sports Medicine, Bd. 14, Nr. Suppl. 1, Art. Nr. Suppl. 1, 1993, doi: 10.1055/s-2007-1021222.
    2. J. F. Wagner, T. Henke, und H. de Marées, „Zur Anregung und messtechnischen Erfassung der dreidimensionalen Bewegung des Ruderboots“, in Neue Forschungsergebnisse zum Rudersport, Köln: Bundesinstitut für Sportwissenschaft, 1993, S. 1–12.
    3. J. F. Wagner, „Identifying the Speed Polar During Normal Soaring Flight“, IUTAM Symposium on Identification of Mechanical Systems (Wuppertal, Germany, 23-27 August 1993), 1993.
  30. 1990

    1. J. F. Wagner, „A Method of Considering Instationary Effects of Lift and Induced Downwash during Real-Time Flight-Simulations“, in Preprints of the Second Braunschweig Aerospace Symposium: Real-Time Models for Control, Measurement, and Estimation Systems, 1990, S. 59–70.

1985             Diplom, Fachrichtung Luft- und Raumfahrttechnik,
                     Universität Stuttgart

1986 - 1992  Wissenschaftlicher Mitarbeiter,
                     Institut A für Mechanik, Universität Stuttgart

1993 - 1996  Entwicklungsingenieur,
                     Aerodata Flugmesstechnik GmbH, Braunschweig

1995             Promotion auf dem Gebiet der Flugmechanik

1997 - 1999  Oberingenieur
                     Arbeitsbereich Flugzeug-Systemtechnik, TU Hamburg-Harburg

2000 - 2002  Habilitand
                     Arbeitsbereich Mechanik und Meerestechnik, TU Hamburg-Harburg

2003             Habilitation auf dem Gebiet der Mechatronik

seit 2003      Professur für Flugmesstechnik (Adapt. Strukt. in der Luft und Raumf.)
                     Universität Stuttgart

2009 - 2012  Techn. Direktor des Deutschen SOFIA Instituts, Univ. Stuttgart
seit 2012      Technical Advisor des Deutschen SOFIA Instituts, Univ. Stuttgart

Kontakt

 

Professur für Flugmesstechnik

Pfaffenwaldring 31, D-70569 Stuttgart

Zum Seitenanfang